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Fanglin Bao,1,2 Bin Luo,3 and Sailing He2,3,4,*

1Department of Physics, Zhejiang University, Hangzhou 310058, China
2Centre for Optical and Electromagnetic Research, JORCEP, Zhejiang University (ZJU), Hangzhou 310058, China

3Centre for Optical and Electromagnetic Research, ZJU-SCNU Joint Research Center of Photonics, South China Normal University,
Guangzhou 510000, China

4Department of Electromagnetic Engineering, Royal Institute of Technology, 10044 Stockholm, Sweden
(Received 1 March 2015; published 9 June 2015)

For the Casimir piston filled with an inhomogeneous medium, we regularized and expressed the Casimir
energy with cylinder kernel coefficients by using the first-order perturbation theory. When the refractive index of
the medium is smoothly inhomogeneous (i.e., derivatives of all orders exist), a logarithmically cutoff-dependent
term and a quadratically cutoff-dependent term in the Casimir energy are found. We show that in the piston model
these terms vanish in the force and thus the Casimir force is always cutoff independent, but these terms will
remain in the force in the half-space model and must be removed by additional regularizations. We give explicit
benchmark solutions to the first-order corrections of both Casimir energy and Casimir force for an exponentially
decaying profile. The present method can be extended to other inhomogeneous profiles. Our results should be
useful for future relevant calculations and experimental studies.
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I. INTRODUCTION

The Casimir effect [1,2] is known as one of the direct mani-
festations of vacuum zero-point energy in quantum physics.
A mode-summation method can be used to predict easily
an attractive force between two electrically neutral, perfectly
conductive half-spaces. Following Casimir’s pioneering work,
many other approaches such as Lifshitz formulation [3–6],
source theory [7], scattering theory [8–13], and so on have
been developed to extend the study of the Casimir effect
to real materials [14], finite temperatures [15], and curved
geometries [16–19]. However, the Casimir force in a variety
of scenarios is involved with many divergence problems during
calculations, in contrast with Casimir’s work, due to the
geometry of boundaries or topology of space [20–22]. These
unresolved divergences usually show a logarithmic cutoff
dependence and seem to be irremovable (while other quartic
or cubic cutoff-dependent terms in Casimir energy are already
well understood as volume energy or surface energy, and thus
are removable) [23,24].

When the inhomogeneity of the medium rather than the
complicated geometry of objects in the Casimir apparatus
is considered, it is known that analytical description of the
Casimir force (stress or force density) has already been
obtained [25,26], without an explicit divergence problem.
The results in both references have subtracted the “bulk
contribution” and thus relate only to the scattering Green’s
function. This, in our minds, regularizes the quartic diverging
term (volume energy) in the Casimir energy, but might not be
a thorough regularization, as also mentioned in Refs. [25,27].
In fact, divergences indeed occur when one tries to evaluate
the numeric values of both the Casimir energy and the Casimir
force, according to the obtained analytical description within
an inhomogeneous medium [25]. Efforts have been made,
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since then, to understand the remaining divergence [28], but
the problem is still far from solved.

We note, in the model of half-spaces which is used in
Ref. [25], cutoff-dependent terms in the Casimir energy must
be assigned physical meanings and thus removed manually by
introducing corresponding regularizations. While in the model
of the Casimir piston, cutoff-dependent terms may vanish
automatically in the Casimir force, due to the cancellation
of contributions from the left and right cavities. We also
note a naive mode-summation approach [29] in the first-order
perturbation theory (which is supposed to show the cutoff
dependence) turns out to yield cutoff-independent results of
the Casimir force for inhomogeneous media. All of the above
have led us to expect that more useful information could
be obtained from the Casimir piston model. Therefore, we
adopt the piston model here, following the mode-summation
approach in the first-order perturbation theory as in Ref. [29]
(but in a more general form), to investigate the Casimir physics
within inhomogeneous media. The purposes for doing so
are threefold. First, we want to analyze the inhomogeneity-
induced Casimir divergence with the heat kernel expansion and
expect to obtain some insights for additional regularizations
for the half-space model. Second, we want to know if the
cutoff independence of the Casimir force is true for various
inhomogeneous profiles, instead of a particular case. Third,
we want to show how large the influence of the inhomogeneity
on the total Casimir force is. As weak force measurements have
been developed [14,30,31] and reached a quite precise level
(within 1%) [32], and the Casimir force between bodies in a
liquid has also been measured [33,34], inhomogeneity-induced
corrections may be useful for future experimental studies
as the experimental configuration becomes more and more
complicated.

In the present paper, we first derive general expressions
of Casimir energy for inhomogeneous media in Sec. II. The
summations in expressions of Casimir energy are organized
and re-expanded over the cutoff parameter in Sec. III. Then
we prove the cutoff independence of the Casimir force
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for smooth inhomogeneity in Sec. IV, where we also see
logarithmic divergence in the half-space model. We investigate
the exponentially decaying inhomogeneity in Sec. V and give
first-order corrections to the Casimir energy and the Casimir
force. Discussions and conclusions are given in Secs. VI
and VII, respectively.

II. CASIMIR ENERGY OF PLATES WITHIN
INHOMOGENEOUS MEDIA

In the mode-summation technique, the total zero-point
energy of the Casimir piston device (see Fig. 1) is expressed
as [29]

E0 = 1

2

∑
m,p,q,λ

ωm,p,p,λ + L → R, (1)

where m, p, and q are indexes for three wave numbers (m for
the direction perpendicular to the plates), λ is the index for
polarization, the notation L → R represents the counterpart
for the right cavity, and also we have set � = c = 1, which
will be recovered later according to dimensional analysis. For
simplicity, we use k‖ to account for {p,q}, t for {m,k‖}, and
J for {t,λ}. Below we focus on the left cavity and omit the
notation L → R in all equations, just keeping in mind that the
right counterpart should be added in the final step. We adopt
the cutoff regularization, and Eq. (1) then becomes

Ẽ = lim
ξ→0

1

2

∑
J

ωJ e−ξωJ . (2)

We omit the limit notation in the following for simplicity as
well.

When there is an inhomogeneous perturbation in the
refractive index n(x) = n0[1 + δαf (x)], where δα is a small
perturbation value, the difference of the regularized Casimir

0 a D

FIG. 1. (Color online) The Casimir piston model [29] with four
(top, bottom, front, and back) hidden plates. The cyan curve represents
an arbitrary inhomogeneous profile of the refractive index. All plates
are of perfect conductivity.

energy is then

δẼ = 1

2
∂ξ

∑
J

ξω1
J e−ξω0

J , (3)

with ω1
J = −δαPJ ω0

J and PJ ≡ 〈χ0
J |f (x)|χ0

J 〉. χ0
J is the

J th unperturbed eigen wave function with ω0
J being its

eigenfrequency. We can find the expressions for the electric
fields χ0

J in Ref. [29] [Eqs. (14) and (15) after correction in
their erratum; we do not use E for electric field here to avoid
confusion with Casimir energy]. We have also considered the
perturbation of frequency in the exponent, and thus we get a
factor of ∂ξ ξ in our Eq. (3). However, it does not otherwise
change our argument. Therefore, we can obtain

δẼ = − δα

2n0
∂ξ ξ

∑
J

PJ k0
J e−ξk0

J /n0 . (4)

Here k0
J =

√
k2
‖ + (mπ/a)2 is the wave number for homoge-

neous media defined as k0
J ≡ n0ω

0
J . The perturbation theory is

justified as long as PJ is bounded and δαPJ � 1. We note
that only PJ varies for different polarizations. To sum up
polarizations first, we obtain

∑
λ=1,2

PJ = (2 − δm0)F0 − (2 − δm0)
(mπ/a)2

k2
‖ + (mπ/a)2

Fm, (5)

with the Fourier coefficient of the perturbation profile f (x),

Fm ≡ 1

a

∫ a

0
f (x) cos

2mπx

a
dx, (6)

where λ = 1,2 represents two different polarizations. To
obtain the counterparts of our Eqs. (5) and (6) for the right
cavity we can substitute a with D − a and also change the
integration range in Eq. (6) from (0,a) to (a,D).

Substituting Eq. (5) into Eq. (4), we can split the Casimir
energy into two parts for the convenience of calculation. The
first part is

δẼ1 = − δα

2n0
∂ξ ξ

∑
t

(2 − δm0)F0k
0
t e

−ξk0
t /n0

= δαAn2
0

4π
F0∂ξ ξ∂ξ 
̂(ξ )

∑
m

(2 − δm0)e−mπξ/an0 , (7)

and the second part is

δẼ2 = δα

2n0
∂ξ ξ

∑
t

(2 − δm0)
(mπ/a)2

k2
‖ + (mπ/a)2

Fmk0
t e

−ξk0
t /n0

= δαAn2
0

4π
∂3
ξ

∑
m

(2 − δm0)Fme−mπξ/an0 , (8)

where 
̂ ≡ ξ−2(1 − ξ∂ξ ), m = 0,1,2, . . ., and A is the surface
area of plates. To get the second equalities for both Eqs. (7)
and (8) we have integrated over k‖, provided that the lateral
dimension of the plates is much larger than the distance
between plates, i.e.,

√
A 	 D, so we can replace summation

with the corresponding integral. The counterparts of Eqs. (7)
and (8) for the right cavity can be obtained by substituting a

with D − a.
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On the other hand, following Eq. (2) and integrating over
k‖, we can also obtain the regularized Casimir energy for the
homogeneous case:

Ẽh = −An2
0

4π
∂ξ 
̂(ξ )

∑
m

(2 − δm0)e−mπξ/an0 . (9)

Now, we can multiply Eqs. (7)–(9) with a factor of �c,
and add to them with the counterparts of the right cavity, and
then take the ξ → 0 limit. The sum of these three equations
gives the total Casimir energy for the inhomogeneous case. Its
derivative with respect to position a yields the Casimir force on
the central plate. These three expressions are quite general for
perturbation profiles as long as PJ is bounded and δαPJ � 1.

III. SUMMATION AND RE-EXPANSION

The summations in Eqs. (7) and (9) can be expressed in
terms of a polylogarithm function:

∑
m=0

(2 − δm0)e−mπξ/an0 =
(∑

m=1

2e−mπξ/an0

)
+ (2 − δ00)

= 2Li0(e−πξ/an0 ) + 1. (10)

The summation in Eq. (8) depends on the particular form of
the perturbation profile. However the m = 0 term vanishes
obviously. Then we can rewrite it as

δẼ2 = δαAn2
0

2π
∂3
ξ

∑
m=0 or 1

Fme−mπξ/an0 , (11)

where m can run from 0 or 1 as needed. For the Taylor basis
of order d,

fd (x) =
( x

D

)d

, (12)

where d = 0,1,2, . . ., according to the definition of Fm (we
now consider m running from 1), we can integrate by parts to
get the following relation for d � 2 for the left cavity:

FL
m,d = ad

D(2mπ )2

( a

D

)d−1
−

( a

2mπ

)2 d(d − 1)

D2
FL

m,d−2,

(13)

while we have FL
m,0 = FL

m,1 = 0. The explicit expression is
then

FL
m,d =

[d/2]∑
i=1

(−1)i−1d!

(d + 1 − 2i)!
(2mπ )−2i

( a

D

)2i−1 ( a

D

)d+1−2i

,

(14)

where [d/2] denotes the bare integer part of d/2. The
counterpart for the right cavity can be obtained similarly:

FR
m,d =

[d/2]∑
i=1

(−1)i−1d!

(d + 1 − 2i)!
(2mπ )−2i

×
(

D − a

D

)2i−1 [
1 −

( a

D

)d+1−2i
]

. (15)

We note that they all have the form
∑[d/2]

i=1 gim
−2i , where gi’s

are some coefficients independent of m. Back to Eq. (11), we

now know the summation is a combination of polylogarithm
functions:

δẼ2 = δαAn2
0

2π
∂3
ξ

[d/2]∑
i=1

giLi2i(e
−πξ/an0 ). (16)

In general, these polylogarithm functions can be expanded
over ξ (with ξ → 0) as

Li0
(
e
− πξ

an0
) = an0

πξ
+

∞∑
k=0

ζ (−k)

k!

(
− πξ

an0

)k

,

Lis
(
e
− πξ

an0
) = 1

(s − 1)!

(
− πξ

an0

)s−1 [
Hs−1 − ln

(
πξ

an0

)]

+
∞∑

k=0,k �=s−1

ζ (s − k)

k!

(
− πξ

an0

)k

, (17)

where s = 2,4,6, . . ., and Hs = ∑s
h=1 1/h is the harmonic

number with H0 = 0.
Before going further to get the explicit expression of

the Casimir energy for the inhomogeneous case, we inspect
another set of profiles,

f (x) = e−ηx+, (18)

where Re[η] � 0. The exponential profile is mathematically
convenient and allows for direct comparison to previous
studies [25] and if we set η to be purely imaginary it can also
describe the sinusoidal profile which has also been studied
previously [29]. For the left cavity we have (we now consider
m running from 0)

FL
m,η = e

4πi
[1 − e−ηa]

[
1

m − iηa/2π
− 1

m + iηa/2π

]
.

(19)

The right counterpart could be obtained by the substitution
(1 − e−ηa) → (e−ηa − e−ηD), a → (D − a). Equation (11)
then becomes

δẼ2 = δαAn2
0

2π

e

4πi
[1 − e−ηa]

× ∂3
ξ

[
φ

(
e
− πξ

an0 ,1, − iηa

2π

)
− φ

(
e
− πξ

an0 ,1,
iηa

2π

)]
.

(20)

Here the Lerch zeta function φ can be expanded over ξ (with
ξ → 0) as

φ
(
e
− πξ

an0 ,1,β
) =

⎡
⎣∑

k=0

(
πξ

an0
β
)k

k!

⎤
⎦{ ∑

k=1

ζ (1 − k,β)

( − πξ

an0

)k

k!

+
[
ψ(1) − ψ(β) − ln

(
π

an0

)
− ln ξ

]}
,

(21)

where ψ is the digamma function and ζ is the Hurwitz zeta
function. We note β is not any negative integer and thus ζ (1 −
k,β) and ψ(β) are always finite. Furthermore, since only β is
complex, we have φ(e−πξ/an0 ,1,β∗) = φ∗(e−πξ/an0 ,1,β) and
that is why Eq. (20) is always real.
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IV. CUTOFF INDEPENDENCE

Up to now, we see the total Casimir energy for the
inhomogeneous case is generally expressed as a Laurent-type
series:

Ẽ = Ẽh + δẼ1 + δẼ2 =
∑
i=−4

Ciξ
i +

∑
i=0

Niξ
i ln ξ . (22)

These coefficients Ci and Ni are well-studied heat kernel
(or more precisely cylinder kernel here) coefficients in cutoff
regularization [23,24,35]. They depend only on the geometry
property and the boundary condition of the system under
consideration. The divergent terms under limit ξ → 0 are
usually assigned to the self-energy of volume or surface and
so on to renormalize the theory. Here, in our case, we should
check these divergent terms, making sure that their coefficients
are independent of position a so that these divergences do not
go into the Casimir force, as we expect the observable—the
Casimir force—to be finite. The constant term C0 is the free
Casimir energy, and its derivative with respect to position a is
the Casimir force we want to calculate. Once these divergent
terms are assured to be independent of position a, the final
result of the Casimir force should be identical to the result
from Ref. [36].

We now prove the cutoff independence of the Casimir force
for any smoothly inhomogeneous perturbation profile. We
know any smooth function in domain (0,D) can be expanded
via the Taylor bases given in Eq. (12). Therefore, equivalently
what we need is to prove the cutoff independence of the
Casimir force for the basis of any order d. We proceed in
the following way.

First, the cutoff property of Eq. (7) is determined by
F0∂ξ 
̂(ξ )(2Li0 + 1) and the cutoff property of Eq. (9) is de-
termined by ∂ξ 
̂(ξ )(2Li0 + 1) according to Eq. (10). We note
the operators acting on the polylogarithm function generally
decrease the power of ξ by 3 orders, and Li0 = ∑

i=−1 liξ
i .

Thus we have to check i = −1 to 3 to see the cutoff property.
According to the expansion of the polylogarithm function,
Eq. (17), we have

lL−1ξ
−1 = an0

πξ
, lR−1ξ

−1 = (D − a)n0

πξ
.

Thus for Eq. (9) we have

C−4ξ
−4 ∝ ADn3

0ξ
−4,

and for Eq. (7) we have

C−4ξ
−4 ∝ ADn3

0ξ
−4δα

1

D

∫ D

0
f dx.

These two quartic divergent terms serve as the self-energy
of the intermedia which is exactly of volume AD, and their
independence of position a indicates they will not come into
the Casimir force. Next, we also have

lL0 = lR0 = − 1
2 ,

which means C−3ξ
−3 = 0 for both Eqs. (7) and (9). This term

is usually proportional to the surface area A and serves as the
surface energy. The absence of the surface divergence term is
due to the cancellation of TE and TM contributions as also
reported in Ref. [22]. Next, we note, whatever l1ξ

1 is, we

have 
̂(ξ ) · l1ξ
1 = 0 and whatever l2ξ

2 is, we have ∂ξ 
̂(ξ ) ·
l2ξ

2 = 0. Thus C−2ξ
−2 = C−1ξ

−1 = 0. Therefore, the cutoff-
dependent terms in Eqs. (7) and (9) all vanish in the Casimir
force.

Now we turn to the contribution from Eq. (8), which has
been expressed as Eq. (16). Since ∂3

ξ has a good property—all
polynomial terms under it vanish when ξ → 0, for positive
plural s = 2i, we only need to consider the logarithm terms in
Lis to check the cutoff property. We have

gL
i

(
ξ

a

)2i−1

ln ξ + gR
i

(
ξ

D − a

)2i−1

ln ξ

∝ ln ξ

{(
ξ

a

)2i−1 ( a

D

)2i−1 ( a

D

)d+1−2i

+
(

ξ

D − a

)2i−1 (
D − a

D

)2i−1 [
1 −

( a

D

)d+1−2i
] }

=
(

ξ

D

)2i−1

ln ξ. (23)

After performing ∂3
ξ , we see term i = 1 contributes to C−2ξ

−2

and term i = 2 contributes to N0 ln ξ . All other logarithm terms
under ∂3

ξ vanish when ξ → 0. We see C−2 ∝ 1
D

and N0 ∝ 1
D3 ,

and thus both of them are independent of position a. However,
in the half-space model there is no right cavity; therefore,
those logarithm terms will appear to be a dependent and must
be removed manually. Unfortunately, this is an unresolved
problem yet, as we know.

This completes our proof that for the Taylor basis of any
order d, the Casimir force for plates within an inhomogeneous
medium is cutoff independent. Therefore, for any smooth
inhomogeneity, which is a superposition of Taylor bases, the
Casimir force will have the inherited cutoff independence.

V. APPLICATIONS

The Taylor expansion of the inhomogeneity profile is useful
for cutoff analysis, but will result in a series of constant terms,
Cd

0 . This is inconvenient for calculation of the free Casimir
energy and the Casimir force. Fortunately, for some cases, we
are able to do the calculation without the Taylor expansion.
One example is the profile given in Eq. (18) with η > 0 and
 = 0. Such a profile is common for fluids and gases in the
gravitational field and is potentially experimentally achievable
by engineering the density of a medium with acousto-optical
techniques or other external fields.

The cutoff independence of Ẽh and δẼ1 can be analyzed
exactly in the same way as above, while the δẼ2 now is
described by Eq. (20). Similarly, the logarithm terms

(1 − e−ηa)

(
βLξ

a

)k

ln ξ + (e−ηa − e−ηD)

(
βRξ

D − a

)k

ln ξ

∝ (1 − e−ηD)ξk ln ξ,

are independent of position a. Therefore, we have again the
cutoff independence of the Casimir force, as expected.

To obtain the explicit expression of the Casimir force, we
only need to calculate the C0 term, which comes from ξ 3 in Li
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or φ. Now we have

FL
0 = 1

ηa
(1 − e−ηa), FR

0 = 1

η(D − a)
(e−ηa − e−ηD).

(24)

The C0 contribution from Ẽh is

−An2
0

4π
(−2)

[
2ζ (−3)

3!

(
− π

an0

)3

+ 2ζ (−3)

3!

(
− π

(D − a)n0

)3
]

= −A�cπ2

720n0

[
1

a3
+ 1

(D − a)3

]
. (25)

Here we have recovered �c in the end. The C0 contribution
from δẼ1 is

δα
A�cπ2

720n0

[
FL

0

(
1

a

)3

+ FR
0

(
1

D − a

)3
]

. (26)

During the calculation of this term, we have seen that the
operator ∂ξ ξ introduced by including the exponent in the regul-
arization in Eq. (3) does not change the observable value
(compared with the one without including the exponent in the
regularization), as expected. The C0 contribution from δẼ2 is

δα
A�cπ2

720n0

(
1

a

)3 180

π
(1 − e−ηa) ·

× Im

[
β3

(
ψ(1) − ln

η

2n0
+ 11

6

)

+ β3[ln iβ − ψ(β)] − β/12

]
+ L → R, (27)

where β = − iηa

2π
and L → R represents the right counterpart

where we should make the replacement (1 − e−ηa) → (e−ηa −
e−ηD) and the replacement a → (D − a) for the other a’s. Im
is the symbol for the imaginary part of an expression.

If we make the transforms η → −ib π
D

and  → i and
make use of the real part of Eqs. (19) and (20), we can have
some insights for profiles f (x) = cos ( bπ

D
x + ), where 0 �

 < 2π and b > 0. We have

FL
m,b = 1

4π

[
sin  − sin

(
2π

ba

2D
+ 

)]

×
[

1

m − ba/2π
− 1

m + ba/2π

]
and

δẼ2 = δαAn2
0

2π

1

4π

[
sin  − sin

(
2π

ba

2D
+ 

)]

× ∂3
ξ

[
φ

(
e
− πξ

an0 ,1, − ba

2π

)
− φ

(
e
− πξ

an0 ,1,
ba

2π

)]
.

Here we choose b = 2 and  = 0. For 0 < a < D we have 0 <

ba/2D < 1 so the Lerch function is well defined. Together
with another profile, f (x) = 1, and some numeric factors, we
can recover the result of Ref. [29] following the procedures
above.

Back to the exponentially decaying profile, we evaluate the
influence of inhomogeneity on the total Casimir force. We
focus on the left cavity part. When a → ∞, Re[ln iβ − ψ(β)]
vanishes, but [ψ(1) − ln η

2n0
+ 11

6 ] is nonzero and depends on
material’s properties n0,η. This means Eq. (27) contains a part
of energy that is not free and thus has no influence to Casimir
force. We let D → ∞ to remove the right cavity so that we
can focus only on the left cavity (two-plate interaction). The
force contributions are

Fh = −A�cπ2

240n0

1

a4
, (28)

δF1 = δα
A�cπ2

240n0

1

a4

[
FL

0 + 1

3

[
FL

0 − f (a)
]]

, (29)

δF2 = δα
A�cπ2

240n0

1

a4

{
60

π
(e−ηa − 1)Im

[
β3[1 − βψ ′(β)] + β

6

]

− 60

π
ηae−ηaIm

[
β3

(
ψ(1) − ln

η

2n0
+ 11

6

)

+β3[ln iβ − ψ(β)] − β

12

]}
. (30)

Equation (28) is the well-known Casimir force between two
plates within homogeneous media. If we treat the medium
between two plates as homogeneous and use the average
refractive index, we can get an approximation of the Casimir
force:

F̄h = −A�cπ2

240n0

1

a4

[
1 − δαFL

0

]
. (31)

This is exactly the combination of Eq. (28) and the first part
of Eq. (29). The rest (second part) of Eq. (29) together with
Eq. (30) is written as δF̄ . This term is easy to understand. It
reflects the change of the average refractive index when the
plate is shifted.

The relation between F̄h and δF̄ is given in Fig. 2. We
should emphasize that, according to Eqs. (5) and (19), we
have δα

∑
λ PJ < 2δα. All δα < 1 isare permitted within

perturbation theory (though the first-order correction might
not be enough). Our simulation results clearly show, when
η > 107 m−1 and δα > 0.2, the correction even dominates
over the homogeneous approximation and flips the sign in
some range. When δα = 0.1, the first-order corrections also
have a relative magnitude of peak 50% and thus cannot be
ignored. We should take seriously this inhomogeneity-induced
repulsion, since this might indicate alternatively the first-order
perturbation is too rough for such an intense inhomogeneity.
To investigate whether inhomogeneity can induce the repulsive
Casimir force and be used to control the Casimir force, we
need further studies. On the other hand, when δα � 0.01, or
η � 5 × 105 m−1, in the range of 0–1 μm where the Casimir
force is measurable, the correction is well below 1% and can
be omitted. In fact, most experiments under natural conditions
belong to this case.
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FIG. 2. (Color online) The homogeneous approximation and the
exact Casimir pressure including the first-order correction between
plates within an inhomogeneous medium. Solid curves are approx-
imations and dashed curves are exact pressures in units of Pascal
(minus means attractive). All x axes are the position a. The parameters
are η = 107 m−1 and n0 = 1.5 for all, while δα = 0.3, 0.1, and
0.01 for the red (long-dashed), blue (medium-dashed), and cyan
(short-dashed) curves, respectively. Red solid, blue solid, cyan solid,
and cyan short-dashed curves appear to coincide. Insets are ratios
of δF̄ /F̄h. Top inset: δα = 0.1, n0 = 1.5, and η = 2 × 107, 5 × 106,
2 × 106, and 5 × 105 m−1 for red solid, green short-dashed, blue
medium-dashed, and cyan long-dashed curves, respectively. Bottom
inset: η = 2 × 107 m−1, n0 = 1.5, and δα = 0.3, 0.2, 0.1, and 0.01
for red solid, green short-dashed, blue medium-dashed, and cyan
long-dashed curves, respectively. Zero base lines are plotted as visual
guides.

VI. DISCUSSIONS

First, we note the linearly inhomogeneous case f (x) =
x/D. From Eq. (16) we know δẼ2 = 0; thus there is no
logarithm term. This seems to tell us that removing the “bulk
contribution” is enough in this case to retrieve finite Casimir
force in the half-space model. This actually is not true. A
second-order correction, 〈χ0

J |(x/D)2|χ0
J 〉, would immediately

introduce logarithm terms, let alone higher-order corrections.
We thus stress that our results are valid in the first-order
approximation.

If the central plate is of finite thickness, the local pressures
of the surrounding medium on both sides of the plate do not

cancel. Such pressures are worthy of further study. In this
paper, we assume the thickness of the plate is infinitesimal
and study the interactions between plates to avoid a mixture
of problems.

Last, if somehow we knew higher-order corrections would
not produce both a- and cutoff-dependent terms, which
is a reasonable expectation, the magnitudes of first-order
corrections would be quite reliable then.

VII. CONCLUSIONS

With the mode-summation technique and first-order per-
turbation theory, we have expressed the regularized Casimir
energy for the inhomogeneous case with cylinder kernel coeffi-
cients, as Eq. (22). Like other unresolved Casimir divergences,
we found the presence of the logarithmically cutoff-dependent
term [see Eq. (23) and the subsequent analysis]. Our results
have also shown there is a term of quadratic cutoff dependence
in the Casimir energy. In the piston model such terms are
independent of position a and thus vanish in the force, while
in the half-space model such terms are dependent on a and
thus remain in the force. Consequently, we must introduce
additional regularizations to remove them in the half-space
model, though it is not clear how to do this.

Based on the piston model, our results have shown, for
any smoothly inhomogeneous profile, the Casimir force is
always cutoff independent in the first-order perturbation. For
some other profiles that are not smooth, it seems one can
still get cutoff-independent results, though we cannot give a
rigorous proof yet that this is always the case. Our results
support the method in Ref. [36] to omit diverging terms when
simulating the Casimir force within inhomogeneous media
numerically.

We have also calculated the first-order corrections to both
the free Casimir energy and the free Casimir force for an
exponentially decaying profile. Surprisingly, comparing with
the homogeneous analog where the average refractive index
between two plates is used, we found the correction to the
Casimir force can be even larger than the predicted value of
the homogeneous analog and flips the sign of the force,
though we note the first-order correction might not be accurate
enough. All of these results may be useful as a reference
for future relevant theoretical calculations and experimental
studies.
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